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Introduction 
 
Crown ethers discovered by Ch. Pedersen in 1967 [1] possess some important properties 
which could affect both the increase of conductivity of Li ions in polymer electrolytes and 
the decrease of resistance of charge transfer in the Li/polymer electrolyte interface [2-4]. 
Crown ethers were introduced in polymer electrolytes and improved electrochemical 
properties of the interface with a lithium electrode were found. Crown ethers form 
complexes as a result of an ion-dipole interaction with a rigid Li cation, complex stability 
being dependent of a ratio of the Li+ ionic radius (1.2 Å) to the size of macrocyclic 
polyether cavity. The choice of certain crown ether was defined by the necessity of 
preparing not a very stable complex with Li+, which allowed Li ions to penetrate freely 
through the cavity of crown ether. 14-Crown-4 and 15-crown-5 have cavities of diameter of 
1.2 Å and 1.7 Å, respectively [5]. Thus, 15-crown-5 was chosen. 
This work reports on the study of the effect of 15-crown-5 on resistance of charge transfer in 
the Li/polymer electrolyte interface by applying liquid crown ether directly to a Li electrode 
surface. The polymer composition of oligourethane dimethacrylate and polypropylene glycol 
monomethacrylate studied by us previously [6] was used as a polymer matrix for gel 
electrolyte.  

 
 

Experimental 
 
Oligourethane dimethacrylate (Mn ≈ 1400; Mw ≈ 1600):  
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and polypropylene glycol monomethacrylate (ММ = 376): 
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were used to prepare polymer gel electrolytes. 
 
These ingredients polymerize via double bonds upon heating (a radical initiator is 
azobis(isobutyronitrile)) to form a three-dimensional network whose pores can keep a 
liquid electrolyte. The oligomer-monomer mixture at a 1:1 mass ratio was introduced in an 
aprotic liquid electrolyte (80 w/w.%), namely, 1 М LiClO4 in γ-butyrolactone (GBL) and then 
the film was formed and thermally cured at 800С for 3 hours. 
Electrochemical impedance was measured within 12 - 105 Hz range at a measuring signal 
amplitude equal to 0.005 - 0.01 V using a LCR819 instrument (Goodwill Instruments Ltd.). 
The experimental data were processed in accordance with the model of adsorption 
relaxation of a double layer [7]. Symmetrical cells with reversible lithium electrodes were 
used as electrochemical ones.  
The metallic Li surface was treated with liquid 15-crown-5 (1 min), an excess of crown-
ether was removed with a filter paper. Some Li electrodes were kept in dry air for up to 6 
months when Li-surface turned black. Thus, the metallic Li electrodes of 4 types were 
tested, namely: 

1) Freshly rolled pure lithium (Li0); 
2) Li covered by a passivating film (Lipass); 
3) Freshly rolled pure lithium treated with 15-crown-5 (Li0crown); 
4) Li covered by a passivating film and treated with 15-crown-5 (Lipass

crown). 
 
  
Results and Discussion 
 
The Li/gel electrolyte interface was electrochemically tested depending on a kind of 
metallic lithium. The impedance spectra of the cells with reversible lithium electrodes are 
presented in Fig.1. Bulk conductivity of such an electrolyte is equal to 3.0x10-3 Ω/cm at 
room temperature.  
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Fig.1 Impedance spectra of gel electrolyte based on 1М LiClO4/GBL and 20 w/w.% of polymer 
composition (220С, gel thickness is 0.048 cm, electrode area is 0.2 cm2) in a symmetrical cell with 
electrodes: 1) Li0; 2) Lipass; 3) Li0crown; 4) Lipass

crown. 
 
 
The temperature dependence of resistance of charge transfer in the electrochemical 
parameters of the electrolyte was analyzed. The Li/gel electrolyte interface was studied for 
all 4 types of lithium surfaces. The activation energy was calculated for this interface 
parameter. The experimental data are summarized in Table 1. 

 
Table 1 Temperature dependence of resistance of charge transfer in the interface of Li-gel 
electrolyte based on 1М LiClO4/GBL and 20 w/w. % of polymer composition. Activation energies of 
charge transfer.  
 

Resistance of charge transfer (Ω·cm2)  
Temperature (0С) 
 

Li electrode 

-8 5 22 50 
Activation 

energy 
(eV) 

Li0 4 200 1 270 120 24 0.676 ± 0.074 
Lipass 4 765 1 730 45 28 0.705 ± 0.180 
Li0crown 1 660 320 68 10 0.693 ± 0.042 
Lipass

crown 700 200 66 42 0.390 ± 0.084 
 

It is seen that at room temperature the least value of resistance of charge transfer in the 
the Li/gel electrolyte interface is that of Li covered by a black passivating film. It is known 
[8] that Li does not react with absolutely dry air without heating at room temperature. 
However, in wet air (water content is > 80 %) Li reacts with H2O and CO2 to form white 
LiOH and Li2CO3. We observed black Li3N on the Li surface in minimally wet air. Li3N has 
ionic conductivity of (2±4)×10-4 Ω/cm at room temperature [9]. Though RF in Lipass/gel 
electrolyte interface less than RF in the Li0/gel electrolyte interface at room temperature, at 
other temperatures these values are approximately equal. Entirely other values of RF are 
observed near interfaces after they were treated with crown-ether. These values are lower. 
The lowest value of RF is that for the Lipass

crown/gel electrolyte interface.  
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The activation energies of resistance of charge transfer in the Li/gel electrolyte interface 
are equal in the first three cases (Table 1) within the experimental error. For the 
Lipass

crown/gel electrolyte interface the value of Ea  is 1.8 times lower than those for the other 
interfaces.  
Most possibly is that the (Li-crown)+ complex forms on the pure lithium surface [10]. The 
lithium surface covered by a passivating film provides the formation of complexes of 15-
crown-5 molecules with lithium cations of the Li3N - ionic conductor. Only in this case Ea of 
resistance of charge transfer decreases and can be interpreted by that in gel electrolytes 
Li+ ions have large solvate shells, which prevent from lithium ion approach to the metallic 
lithium surface. In solvents, particularly, GBL, relative distances between donor oxygen 
atoms and Li+ are not constant at Li ion solvation since solvating molecules are not linked 
with each other and have a high degree of freedom. On the contrary, binding oxygen 
atoms in crown ether complexes are located in a certain order at equal distances from a 
cation and, therefore, they are more stable in entropy. Thus, lithium ion loses its solvate 
shell, passes to a crown-ether cavity, and accepts an electron, i.e., Li+ + e  ⇔  Li0 reaction 
is realized.  
 
 
Conclusion 

 
15-Crown-5 positively affects resistance of charge transfer in the interface of Li/gel 
electrolyte based on oligourethane dimethacrylate and polypropylene glycol 
monomethacrylate, provided the addition of 1 М LiClO4 dissolved in GBL. The effect is 
stronger and the activation energy of resistance of charge transfer in Li+ + e ⇔ Li0 reaction 
in the Li/gel electrolyte interface decreases if the metallic lithium surface is passivated by 
Li3N.  
 
 
Acknowledgement 
 
The work was supported by RFBR (grant #03-03-32398). 

 



5th Advanced Batteries and Accumulators – ABA-2004 Lithium Polymer Electrolytes 

References 
 
1. Michio Hiraoka: Crown Compounds. Their Characteristics and Applications. 

Kodansha Ltd., Tokyo 1982, p. 363. 
2. O.V. Yarmolenko, A.E. Ukshe, T.I. Movchan, O.N. Efimov, and A.F. Zueva: 

Elektrokhimiya (in Russian) 31 N4 (1995) 351-355. 
3. O.V. Yarmolenko, A.E. Ukshe, I.K. Yakushchenko, T.I. Movchan, and O.N. Efimov: 

Elektrokhimiya (in Russian) 32 N4 (1996) 508-510. 
4. O.V. Yarmolenko, D.G. Belov, O.N. Efimov: Elektrokhimiya (in Russian), 37 N3 

(2001) 321-327. 
5. Pedersen C.D., Frensdorf H.C.: Russian Advances of Chemistry, 42 N3 (1973) 493-

497. 
6. O.V. Yarmolenko, O.N. Efimov, A.V. Kotova, I.A. Matveeva: Elektrokhimiya (in 

Russian) 39 N5 (2003) 571-577.  
7. B.M. Grafov, E.A. Ukshe: Elektrokhimiya (in Russian), 10 (1974) 1875-1882. 
8. Chemical Encyclopaedia (Knunyahz I.L., ed.). Soviet Encyclopaedia, Moscow 1990, 

Vol. 2, pages 1201-1203. 
9. Torben Lapp, Steen Skaarup, Alan Hooper: Solid State Ionics 11, Issue 2 (1983) 97-

103. 
10. Nilel M. Alpatova, Lev I. Krishtalik, and Yuri V. Pleskov: Electrochemistry of Solvated 

Electrons; in: Topics in Current Chemistry, Vol. 138, Springer-Verlag, Berlin-
Heidelberg, 1987. 

 


	Introduction
	Experimental

