EFFECT 15-CROWN-5 ON LI ANODE/ POLYMERIC ELECTROLYTE INTERFACE CHARGE TRANSFER

Yu.V. Baskakova, O.V. Yarmolenko, O.N. Efimov

Institute of Problems of Chemical Physics Russian Academy of Sciences, Chernogolovka 142432, Russia

Introduction

Crown ethers discovered by Ch. Pedersen in 1967 [1] possess some important properties which could affect both the increase of conductivity of Li ions in polymer electrolytes and the decrease of resistance of charge transfer in the Li/polymer electrolyte interface [2-4]. Crown ethers were introduced in polymer electrolytes and improved electrochemical properties of the interface with a lithium electrode were found. Crown ethers form complexes as a result of an ion-dipole interaction with a rigid Li cation, complex stability being dependent of a ratio of the Li⁺ ionic radius (1.2 Å) to the size of macrocyclic polyether cavity. The choice of certain crown ether was defined by the necessity of preparing not a very stable complex with Li⁺, which allowed Li ions to penetrate freely through the cavity of crown ether. 14-Crown-4 and 15-crown-5 have cavities of diameter of 1.2 Å and 1.7 Å, respectively [5]. Thus, 15-crown-5 was chosen.

This work reports on the study of the effect of 15-crown-5 on resistance of charge transfer in the Li/polymer electrolyte interface by applying liquid crown ether directly to a Li electrode surface. The polymer composition of oligourethane dimethacrylate and polypropylene glycol monomethacrylate studied by us previously [6] was used as a polymer matrix for gel electrolyte.

Experimental

Oligoure than e dimethacrylate ($M_n \approx 1400$; $M_w \approx 1600$):

Corresponding author: Yarmolenko O.V. Tel: (096)5221887, (096)5246777; E-mail:oyarm@icp.ac.ru

and polypropylene glycol monomethacrylate (MM = 376):

were used to prepare polymer gel electrolytes.

These ingredients polymerize via double bonds upon heating (a radical initiator is azobis(isobutyronitrile)) to form a three-dimensional network whose pores can keep a liquid electrolyte. The oligomer-monomer mixture at a 1:1 mass ratio was introduced in an aprotic liquid electrolyte (80 w/w.%), namely, 1 M LiClO₄ in γ -butyrolactone (GBL) and then the film was formed and thermally cured at 80^oC for 3 hours.

Electrochemical impedance was measured within $12 - 10^5$ Hz range at a measuring signal amplitude equal to 0.005 - 0.01 V using a LCR819 instrument (Goodwill Instruments Ltd.). The experimental data were processed in accordance with the model of adsorption relaxation of a double layer [7]. Symmetrical cells with reversible lithium electrodes were used as electrochemical ones.

The metallic Li surface was treated with liquid 15-crown-5 (1 min), an excess of crownether was removed with a filter paper. Some Li electrodes were kept in dry air for up to 6 months when Li-surface turned black. Thus, the metallic Li electrodes of 4 types were tested, namely:

- 1) Freshly rolled pure lithium (Li⁰);
- 2) Li covered by a passivating film (Li^{pass});
- 3) Freshly rolled pure lithium treated with 15-crown-5 (Li⁰_{crown});
- 4) Li covered by a passivating film and treated with 15-crown-5 (Li^{pass}_{crown}).

Results and Discussion

The Li/gel electrolyte interface was electrochemically tested depending on a kind of metallic lithium. The impedance spectra of the cells with reversible lithium electrodes are presented in Fig.1. Bulk conductivity of such an electrolyte is equal to $3.0 \times 10^{-3} \Omega/cm$ at room temperature.

Fig.1 Impedance spectra of gel electrolyte based on 1M LiClO₄/GBL and 20 w/w.% of polymer composition ($22^{\circ}C$, gel thickness is 0.048 cm, electrode area is 0.2 cm²) in a symmetrical cell with electrodes: 1) Li⁰; 2) Li^{pass}; 3) Li^o_{crown}; 4) Li^{pass}_{crown}.

The temperature dependence of resistance of charge transfer in the electrochemical parameters of the electrolyte was analyzed. The Li/gel electrolyte interface was studied for all 4 types of lithium surfaces. The activation energy was calculated for this interface parameter. The experimental data are summarized in Table 1.

Table 1 Temperature dependence of resistance of charge transfer in the interface of Li-gel electrolyte based on 1M LiClO₄/GBL and 20 w/w. % of polymer composition. Activation energies of charge transfer.

	Resistance of charge transfer ($\Omega \cdot cm^2$)				Activation
Temperature (⁰ C)	-8	5	22	50	energy
					(eV)
Li electrode					
Li ⁰	4 200	1 270	120	24	0.676 ± 0.074
Li ^{pass}	4 765	1 730	45	28	0.705 ± 0.180
Li ⁰ crown	1 660	320	68	10	0.693 ± 0.042
Li ^{pass} crown	700	200	66	42	0.390 ± 0.084

It is seen that at room temperature the least value of resistance of charge transfer in the the Li/gel electrolyte interface is that of Li covered by a black passivating film. It is known [8] that Li does not react with absolutely dry air without heating at room temperature. However, in wet air (water content is > 80 %) Li reacts with H₂O and CO₂ to form white LiOH and Li₂CO₃. We observed black Li₃N on the Li surface in minimally wet air. Li₃N has ionic conductivity of $(2\pm4)\times10^{-4}$ Ω/cm at room temperature [9]. Though R_F in Li^{pass}/gel electrolyte interface less than R_F in the Li⁰/gel electrolyte interface at room temperature, at other temperatures these values are approximately equal. Entirely other values of R_F are observed near interfaces after they were treated with crown-ether. These values are lower. The lowest value of R_F is that for the Li^{pass}_{crown}/gel electrolyte interface.

The activation energies of resistance of charge transfer in the Li/gel electrolyte interface are equal in the first three cases (Table 1) within the experimental error. For the Li^{pass}_{crown} /gel electrolyte interface the value of E_a is 1.8 times lower than those for the other interfaces.

Most possibly is that the (Li-crown)⁺ complex forms on the pure lithium surface [10]. The lithium surface covered by a passivating film provides the formation of complexes of 15-crown-5 molecules with lithium cations of the Li₃N - ionic conductor. Only in this case E_a of resistance of charge transfer decreases and can be interpreted by that in gel electrolytes Li⁺ ions have large solvate shells, which prevent from lithium ion approach to the metallic lithium surface. In solvents, particularly, GBL, relative distances between donor oxygen atoms and Li⁺ are not constant at Li ion solvation since solvating molecules are not linked with each other and have a high degree of freedom. On the contrary, binding oxygen atoms in crown ether complexes are located in a certain order at equal distances from a cation and, therefore, they are more stable in entropy. Thus, lithium ion loses its solvate shell, passes to a crown-ether cavity, and accepts an electron, i.e., Li⁺ + e \Leftrightarrow Li⁰ reaction is realized.

Conclusion

15-Crown-5 positively affects resistance of charge transfer in the interface of Li/gel electrolyte based on oligourethane dimethacrylate and polypropylene glycol monomethacrylate, provided the addition of 1 M LiClO₄ dissolved in GBL. The effect is stronger and the activation energy of resistance of charge transfer in Li⁺ + e \Leftrightarrow Li⁰ reaction in the Li/gel electrolyte interface decreases if the metallic lithium surface is passivated by Li₃N.

Acknowledgement

The work was supported by RFBR (grant #03-03-32398).

References

- 1. Michio Hiraoka: *Crown Compounds. Their Characteristics and Applications.* Kodansha Ltd., Tokyo 1982, p. 363.
- 2. O.V. Yarmolenko, A.E. Ukshe, T.I. Movchan, O.N. Efimov, and A.F. Zueva: Elektrokhimiya (in Russian) **31** N4 (1995) 351-355.
- 3. O.V. Yarmolenko, A.E. Ukshe, I.K. Yakushchenko, T.I. Movchan, and O.N. Efimov: Elektrokhimiya (in Russian) **32** N4 (1996) 508-510.
- 4. O.V. Yarmolenko, D.G. Belov, O.N. Efimov: Elektrokhimiya (in Russian), **37** N3 (2001) 321-327.
- 5. Pedersen C.D., Frensdorf H.C.: Russian Advances of Chemistry, **42** N3 (1973) 493-497.
- 6. O.V. Yarmolenko, O.N. Efimov, A.V. Kotova, I.A. Matveeva: Elektrokhimiya (in Russian) **39** N5 (2003) 571-577.
- 7. B.M. Grafov, E.A. Ukshe: Elektrokhimiya (in Russian), **10** (1974) 1875-1882.
- 8. Chemical Encyclopaedia (Knunyahz I.L., ed.). Soviet Encyclopaedia, Moscow 1990, Vol. 2, pages 1201-1203.
- 9. Torben Lapp, Steen Skaarup, Alan Hooper: Solid State Ionics **11**, Issue 2 (1983) 97-103.
- 10. Nilel M. Alpatova, Lev I. Krishtalik, and Yuri V. Pleskov: *Electrochemistry of Solvated Electrons;* in: *Topics in Current Chemistry, Vol. 138*, Springer-Verlag, Berlin-Heidelberg, 1987.