# BATTERY GRAPHITES MEETING THE REQUIREMENTS OF PC AND $\gamma$ -BL ELECTROLYTES

<u>W. Kohs</u><sup>1</sup>, H. Schröttner<sup>2</sup>, I. Barsukov<sup>3</sup>, J. Doninger<sup>3</sup>, F. Hofer<sup>2</sup>, M. Winter<sup>1</sup> and J. O. Besenhard<sup>1</sup>

<sup>1</sup> Institute for Chemical Technology of Inorganic Materials, Graz University of Technology, Austria

<sup>2</sup> Research Institute for Electron Microscopy, Graz University of Technology, Austria <sup>3</sup> Superior Graphite Co., Chicago, USA

# Introduction

Propylene carbonate (PC) and  $\gamma$ -Butyrolactone ( $\gamma$ -BL) based electrolytes are known for their good low and high temperature behaviour. Unfortunately these electrolytes have only very limited abilities to form a protective solid electrolyte interphase (SEI) on the surface of graphite anodes. Beside approaching this problem with electrolyte additives there are also different battery graphites supporting the SEI formation and showing a good cycling stability.

Boron doped graphites, which have already been described as anode materials in lithiumion cells [1, 2], and graphites especially prepared with high contents of rhombohedral phase [3, 4] afford the SEI formation even under bad conditions and show superior properties in these aggressive electrolytes.

# Experimental

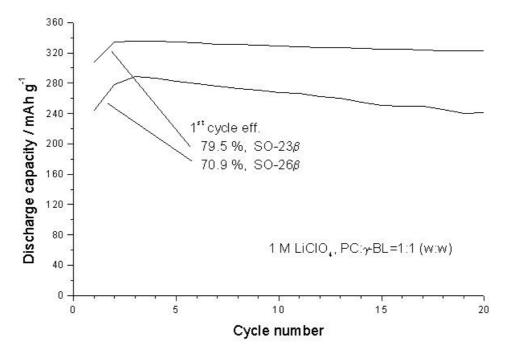
The battery graphites were manufactured by Superior Graphite Co.. Gas adsorption measurements were done using a Quantachrome Autosorb-1. A Bruker AXS D5005 θ/θ diffractometer was used for the X-ray diffraction measurements (XRD).

Electrochemical charge/discharge experiments were performed at 25°C using glass cells and a three-electrode setup with lithium as counter and reference electrode. The electrolytes were prepared from commercial battery grade solvents and conducting salts (Merck, Honeywell, Mitsubishi Chemical). Graphite electrodes of 0.9-1.2 mg effective mass and 4 % (wt.) Poly(vinylidene fluoride) were prepared using stainless steel grid as current collector, effective area 4 × 4 mm<sup>2</sup>.

# **Results and Discussion**


The results from the gas adsorption measurements and the XRD investigations are shown in Table 1. The boron content of the boron doped graphites is  $\sim$ 2.5 %.

**Table 1** Specific surface area (BET,  $N_2$ ) and content of rhombohedral phase of the investigated graphites


| Graphite       | Specific surface (m <sup>2</sup> .g <sup>-1</sup> ) | Rhombohedral phase (%) |
|----------------|-----------------------------------------------------|------------------------|
| SO-X           | 3.6                                                 | ~ 0                    |
| SO-Y           | 5.3                                                 | ~ 0                    |
| SO-23β         | 4.2                                                 | ~ 23                   |
| <b>SO-26</b> β | 4.6                                                 | ~ 26                   |

Using PC: $\gamma$ -BL as electrolyte the SO-X started better than the SO-Y indicated by a much higher efficiency in the first cycle (Fig. 1.). However, after longer cycling the capacity of SO-Y remained more stable than that of SO-X.

Comparing the two rhombohedral graphites the SO-23 $\beta$  showed a better 1<sup>st</sup> cycle efficiency and a higher and much more stable discharge capacity (Fig. 2).



**Fig. 1** Progress of the discharge capacities of the boron doped graphites SO-X and SO-Y.  $I_{charge}$ = -100 mA/g - U=24 mV vs. Li/Li<sup>+</sup>, U=24 mV (=const.) for t=1 h,  $I_{discharge}$ =100 mA/g - U=1500 mV vs. Li/Li<sup>+</sup>



**Fig. 2** Progress of the discharge capacities of the rhombohedral graphites SO-23 $\beta$  and SO-26 $\beta$ .  $I_{charge}$ =-100 mA/g - U=24 mV vs. Li/Li<sup>+</sup>, U=24 mV (=const.) for t=1 h,  $I_{discharge}$ =100 mA/g - U=1500 mV vs. Li/Li<sup>+</sup>

### Conclusions

The results achieved show that the demands of an electrolyte like  $PC:\gamma$ -BL can be met up to a certain point by especially prepared graphites. Both classes of graphites have the potential to withstand the aggressiveness of such solvents.

### Acknowledgements

Financial support by the Austrian Science Fund through the special research program "Electroactive Materials" is gratefully acknowledged.

### References

- J.R. Dahn, A.K. Sleigh, H. Shi, B.M. Way, W.J. Weydanz, J.N. Reimers, Q. Zhong, U. von Sacken, in: *Lithium Batteries New Materials, Developments and Perspectives*, (G. Pistoia, Ed.) Elsevier, Amsterdam 1994, Ch. 1.
- 2. M. Winter, K.-C. Moeller, J. O. Besenhard, in: *Lithium Batteries, Science and Technology*, (G.-A. Nazri, G. Pistoia, Eds.) Kluwer, Boston, Dordrecht, New York, London, 2004.
- 3. B. Simon, S. Flandrois, K. Guerin, A. Fevier-Bouvier, I. Teulat, P. Biensan: J. Power Sources **81-82** (1999) 312-316.
- 4. S. Flandrois, K. Guerín: Mol. Cryst. Liq. Cryst. Sci. Technol. 340 (2000) 493-498