MANGANESE DIOXIDES FOR ELECTROCHEMICAL STORAGE OF ENERGY

<u>C. Poinsignon</u>

CNRS-INPG – LEPMI, ENSEEG BP 75 1130 rue de la Piscine F- 38402 Saint Martin d'Heres Cedex

Corresponding author: Christiane Poinsignon (poinsigno@enseeg.inpg.fr) Phone: +334 76 82 65 59 Fax: +334 76 82 66 70

Introduction

MnO₂ (MD) exist under numerous natural (pyrolusite, ramsdellite, nsutite, birnéssite, todorokite, psilomelane) and synthetic (a, b, g/e, d, l) forms. After a brief review of the natural forms, the synthetic ones are examined in view of their applications for electrochemical energy storage. A particular attention is devoted to the synthetic and disordered g/e forms active in alkaline batteries, to illustrate the great sensitivity of MnOx to synthesis conditions.

Experimental

The most active γ/ϵ MD are mainly prepared by electrodeposition (EMD) from a hot and acidic solution of MnSO4 (95°C, pH 1). Mn²⁺ is oxidised into Mn³⁺ unstable in acidic medium it disproportionate to Mn⁴⁺ which generates anodic deposits of MnO₂ simultaneously with oxygen evolution. Both reactions generate chemical defects responsible for MD's structural disorder illustrated in the Rütschi [1] formula:

$$Mn^{4+}_{1-x-y} Mn^{3+}_{y} O^{2-}_{2-4x-y} V^{\circ \circ \circ \circ}_{x} (OH)_{4x+y}$$

and responsible for their electrochemical activity.

Fig. 1 A polyhedral representation of the close-packed structure of pyrolusite or β -MnO₂, ramsdellite, and γ -MnO₂, on which the intergrowth of a pyrolusite structural block in the ramsdellite lattice represents the De Wolff defects.

Results and discussion

A structural model was proposed to analyse the XRD pattern [2], based on two types of defects: intergrowth of tetragonal pyrolusite structural blocks in the orthorhombic ramsdellite network (the De Wolff disorder [3]), and microtwinning of this interspersed structure. Pyrolusite-type defects in a ramsdellite structure can be expressed quantitatively using Pr, defined as the probability that the 'next' neighbour is pyrolusite-type. Hence Pr = 0 for ramsdellite, Pr = 1 for β -MnO₂ (pyrolusite) and 0 < Pr < 1 for the γ -MnO₂ series. Twinning (Tw) of the orthorhombic ramsdellite lattice was necessary to explain the reduction to 6 broad lines in the XRD pattern for some EMD (presented on Fig. 3 in [5]) as well as the occurrence of an apparently hexagonal structure. Both parameters Pr and Tw are calculated from the analysis of diffraction patterns among the protocol defined in [4]. Ranking of γ/ϵ -MD in terms of increasing Pr and Tw defects parallels that of electrochemical activity [6-10]. These structural parameters are related to the occurrence of manganese vacancies (V^{ovev}). They are shown to govern structural [8], electrochemical [9] and surface properties [11-13] of γ -MnO₂

Fig. 2 Influence of Pr rand Tw on the electrochemical spectra of g-MnO2 [6].

Potentiostatic reduction curves recorded with a 10 mV/2h scan rate of $g-MnO_2$ are presented in Fig.2.: Increasing percentage of defects quantified by Pr and Tw improves g-MD electrochemical activity. For Pr=0 (ramsdellite) and Pr=1 [fig.3 micro-b I(V) curve], the reduction potential is low (-0.5V vs Hg-HgO). For g-MD with larger Pr rand Tw, reduction potential is increased to : Pr=0,2 and Tw=0,2 (Isynthetic ramsdellite) the capacity is recovered at -0.35 V (ref Hg-HgO), at -0.1 V for CMD Sedema WSA with Pr=0.45 Tw=0.36. For similar Pr, high Tw value increases both reduction potential and kinetics (EMD Delta).

If Turner and Busek provided HRTEM images illustrating the intergrowth defects in 1983 [14]. Heuer et *al* looking recently for HRTEM image of the "twinning defect" only evidenced "structured" nano-aggregates which were confirmed to represent microtwinning: figure 3 shows the increase in potential carried out by the nanometric dimension during the reduction of a nanocrystalline β -MnO₂ [16].

Fig. 3 I (V, x) Potentiostatic Reduction curves (scan rate 10 mV/2h): micro- β (left) and nano- β (right) in 1M KOH (reference electrode Hg-HgO). Continuous line: (I, V), dotted line: (x, V) curves. X, the reduction rate at -0.6V, is 1 for nano- β (x=1), low for micro- β (x=0.3).

Conclusions

Electrochemical activity of $\tilde{g}eMnO_2$ is shown to be mainly controlled by chemical and associated structural defects quantified with the structural parameters Pr and Tw. Relationships are evidenced between Pr – Tw and the main electro-deposition parameters (bath temperature, concentration in MnSO4, pH, current density) which allow to prepare EMD with required activity. Doping EMD with Ti or Fe amplifies the heterogeneous reduction mechanism in 9M KOH. Depending on the type of reduction process required (fast reversible discharge, or deep discharge) it is possible to obtain g-MnO₂ of precise activity.

Except the stable phases $b-MnO_2$, Mn_2O_3 and Mn_3O_4 , manganese oxides exist over a very large number of isotypes, very sensitive to synthesis conditions. They are well documented over the last decades for lithium insertion, a lot remains to be done for MnOx phases devoted to supercapacitors and AFC cathode catalysts.

References

- 1. P. J. Ruetschi, *Electrochem. Soc.* 131 (1984) 2737.
- 2. J. Pannetier Batteries and Battery Materials, 11 (1992) 51.
- 3. P. de Wolff. Acta Cryst. 12 (1959) 341.
- 4. Chabre and J. Pannetier, Prog. Solid St. Chem., 23, (1995) 1.
- 5. C. Poinsignon, F. Tedjar and J.M. Amarilla, J. Mater. Chem., 12, (1993) 1227.
- 6. C. Poinsignon., J.M. Amarilla., F. Tedjar. Solid State Ionics 70-71 (1-4) (1994) 649.
- 7. J.M. Amarilla., F. Tedjar, C. Poinsignon *Electrochim.Acta* 39 (1994) 2321.
- 8. C. Poinsignon., J.M. Amarilla., F. Tedjar. *Batteries and Battery Materials* 16 (1997) 110.
- 9. L. McLean, C. Poinsignon, J.M. Amarilla, F. Lecras, P. Strobel, *J. Mater.Chem.*, 8 (1995) 1183.
- 10.C. Poinsignon Transworld Research Network : Recent Res. Devel. In Solid State Ionics 2 (2004) 431-446

- 11.B. Prélot, C. Poinsignon, F. Thomas and F. Villiéras, *J. Colloid Interf. Sci.*, 257 (2003) 77.
- 12.B. Prélot, F. Villiéras, M. Pelletier, A. Razafitianamaharavo, F. Thomas and C. Poinsignon, *J. Colloid Interface Sci.*, 264 (2003) 343.
- 13. C. Poinsignon, G Berthomé, B. Prelot, F. Thomas, F. Villieras *J. Electrochem. Soc.* 151 (2004) 1.
- 14.S. Turner, P. Busek Nature 304 (1983) 143.
- 15. A.H. Heuer, A.Q. He, P.J. Hughes and F.H. Freddrix, ITE Letters, 2 (2001).
- 16.C. Poinsignon, E. Djurado, H. Klein, P. Strobel, F. Thomas *Electrochimica Acta* 51 (2006) 3076-3095.