MEASURING OF RELAXATION TIMES OF NATRIUM IONS BY MAGNETIC RESONANCE METHODS

E. Mikotová¹, <u>K. Bartušek</u>², E. Gescheidtová³

^{1,3}Faculty of Electrical Engineering and Communications, Brno University of Technology, Kolejni 2906/4, 612 00 Brno, Czech Republic
²Academy of Sciences of the Czech Republic, Institute of Scientific Instruments, Kralovopolska 147, 612 64 Brno, Czech Republic

Corresponding author: Karel Bartusek (bar@isibrno.cz) Phone: +420 5 41514243

Introduction

Nuclear Magnetic Resonance (NMR) experiments enable describing of the structure and the internal mobility of a wide spectrum of materials and systems from solutions, very soft and movable gels over synthetic polymers to organic and inorganic crystals and very hard rigid glass.

The paper deals with a study of the relaxation times of the nearly liquid and gel electrolytes with content of natrium ions by the NMR technique. Newly designed method of solid electrolytes samples compounding and a suitable method for measurement of the relaxation times during the samples solidification were established.

Experimental

The relaxation times T_1 and T_2 of ²³Na nuclei in the gel electrolytes and their changes during the gel solidification were experimentally measured. Relaxation time T_1 was measured by the Inversion Recovery and the Saturation Recovery techniques application. On the other hand, the relaxation time T_2 was measured by use of the Spin Echo (SE) method and established from half-width of spectral line according to

$$T_2 = \frac{1}{\pi \cdot \Delta \nu} \, ,$$

where Δu is the half-width of the spectral line measured.

The gel is based on polymethylmethacrylate (PMMA). Its preparation consists of mixing three convenient components

- liquid monomer methylmethacrylate (MMA 99%),
- solid oligomer, including an initiator and a matter for polymer netting,
- optional components ensuring conductivity of the ions 0,5 ÷ 1,5 M solution of waterless salt as sodium perchlorate in waterless propylenecarbonate (PC 99,7%).

The use of $NaClO_4$ salt appeared to be the best. Due to its good solubility in propylenecarbonate the 0,5 M, 1 M and 1,5 M solution could be concocted.

Table 1 Saturated solution of NaClO₄

Electrolyte	Saturation	Content of PC	Content of salt
	(mol)	(ml)	(g)
NaClO ₄	0,5	25	3,061
	1,0	25	4,591
	1,5	25	6,122

Results and discussion

The designed methods were experimentally tested on a MR tomograph at the premises of ISI ASCR, Brno with 4,7 T induction of the basic magnetic field, nuclei resonance frequency 200 MHz. The nuclei of ²³Na resonate on 51 MHz frequency. The specimen was a glass phial of 11 ml cubature filled by either 4 ml of liquid electrolyte, or 10 ml gel electrolyte. Data obtained in both time and frequency domains were processed in the MATLAB program.

First, the sample of liquid NaClO₄ with 1M saturation was measured under conditions described above. 24 hours after measurement the gel electrolyte was mixed.

In Fig. 1 the relaxation times T_1 and T_{12} in dependence on the gel ageing are illustrated. Relaxation time T_{12} was established by a more accurate approximation by two exponential functions.

Fig. 1 T_1 and T_{12} relaxation times as a function of gel aging.

Fig. 2 Relaxation time T_2 as a function of gel aging.

From the experimental measurement arise the following conclusions:

- Relaxation times of the liquid electrolyte are in ms. For 1 M concentration they are $T_1 = 3$ ms and $T_2 = 8$ ms.
- By better approximation of data measured with two exponential functions it is T_1 = 5 ms, physically it corresponds to two groups of nuclei with different relaxations, or to systematic errors.
- During the gel electrolyte solidification lasting 160 hours, the relaxation times decreases to values $T_1 = 1$ ms, and $T_2 = 2$ ms. This decrease is not steady still, but due to very low S/N ratio of FID signal it was not possible to measure for a longer time interval.
- The sensitivity of the measurement is not high because of the low S/N ratio neither for 50 signal accumulations. In time domain is S/N ratio 1, in frequency domain 5.
- The relaxation times for liquid and gel electrolyte were the same immediately after the addition of a hardener.

Conclusions

Experimental results indicate the main problem in the relaxation times in gel electrolytes measurement. It consists in very low S/N ratio and their small values, simultaneously; the problem is in the approximate equality of both relaxation constants. The measurements performed are the basis for additional experimental work.

Acknowledgements

This work was supported within the framework of the project B208130604 of the Grant Agency of the Academy of Sciences of the Czech Republic.

References

- 1. M. Vlaardingerbroek, Magnetic Resonance Imaging. Springer-Verlag, (2000).
- 2. K. Bartušek, E. Gescheidtová, Journal of Electrical Engineering. 53 (2002), 49-52.
- 3. K. Bartušek, E. Gescheidtová, IEEE Conference APCCAS2002, Singapore, 79-82.
- 4. V. Mlynarik, Štúdium pomalých dynamických procesov pomocou NMR relaxačných časov. Bratislava: Fakultná nemocnica s poliklinikou akad. L. Dérera, 2001.